Sonnenenergie – Quo Vadis

Dr. Günther Häckl

06. Oktober 2015
Inhalte

> Unternehmen

> Status der Energiewende

> Entwicklung der PV

> Rahmenbedingungen der PV in Deutschland

> Potentiale der PV

> Rolle der Kommunen

> Fazit
SMA SOLAR TECHNOLOGY AG

Daten und Fakten

> 1981 gegründet
> Umsatz 2014: über 800 Mio. Euro
> Über 35 GW installierte SMA Wechselrichter-Leistung weltweit
> Über 1 GW O&M-Portfolio
> Bestens positioniert mit Auslandsgesellschaften in 21 Ländern rund um den Globus
> Über 3.000 Mitarbeiter weltweit
SMA SERVES ALL MARKET SEGMENTS AND ALL POWER RANGES - THIS IS A KEY SUCCESS FACTOR IN A FAST CHANGING MARKET ENVIRONMENT

SMA Utility (> 40 % of 2015 Group Sales)

- New 2.5 MW turnkey solution
- Less design work
- Less working capital
- More yield

SMA Residential (> 25 % of 2015 Group Sales)

- New 1.5 kW / 2.5 kW units
- Simple installation
- Ease of integration into the home grid
- PV Monitoring via smartphone or tablet

SMA Commercial (> 20 % of 2015 Group Sales)

- New 60 kW US unit & 25 kW JP unit
- Simple installation
- Low maintenance costs
- Comprehensive plant performance analysis

SMA Service (> 5 % of 2015 Group Sales)

> O&M Service
> Largest service infra-structure for fast response
> Advanced preventive monitoring features to secure investments

> SMA has a balanced product sales mix and opened up successfully new market segments (e.g. O&M-Service, Storage)

1. Sunny Central Inverter + MV transformer + MV Switchgear
2. In Europe and North America
NO OTHER COMPETITOR HAS A SIMILAR SPECIALIZED GLOBAL SALES & SERVICE INFRASTRUCTURE

SMA’s Global Presence

Global Service Specialists: 400+
Global Service Partner: 90+
Global Sales Professionals: 200+
of Sales & Service Subsidiaries: 16
of Service Monitoring Center: 3

SMA’s Global Sales Mix (in € million)

- Americas
 - Q1 2015: 226, 36%
 - Q2 2015: 203, 47%
 - Q3 2015: 240-270, 46%
 - Full Year 2015: 850-900, 44%

- EMEA
 - Q1 2015: 45%
 - Q2 2015: 34%
 - Q3 2015: 38%
 - Full Year 2015: 35%

- APAC
 - Q1 2015: 19%
 - Q2 2015: 19%
 - Q3 2015: 16%
 - Full Year 2015: 21%

SMA has a balanced regional sales mix and the ability to enter successfully into new upcoming regions (e.g. South America)

1. SMA estimate; preliminary figures
SMA’S MARKET OUTLOOK SHOWS AN INCREASED DEMAND IN 2016 - THE NORTH AMERICAN UTILITY SEGMENT IS THE MAIN GROWTH DRIVER

Comments

> In Americas solar inverter sales are expected to grow by >35% to €1.5 bn in 2016 - The utility segment remains the key growth driver in revenue terms

> In Japan solar inverter sales are estimated to decline by more than 25% due to the already introduced FIT cuts; India and South East Asia are expected to grow slightly in revenue-terms. This trend is mainly driven by commercial and utility-scale PV systems

> The EMEA markets remain stable. Demand in UK remains strong until Q1 2016 due to the deadline for ROC³; Other key markets are France, Benelux and Germany - Those markets have strong demand for commercial & residential systems

The sudden shift in demand towards Utility and North America will change the competitive environment- SMA is best positioned for future sales growth and clearly the global #1 player⁴

1. Excl. Off-grid and Hybrid Systems
2. Source: SMA MI Market Model; Prices according to IHS PV Inverter Market Tracker ⁴. IHS PV Inverter Market Tracker Q3 2015 (Sept. 2015)
Klimaschutz und Kernenergie-Ausstieg durch Umstieg auf Erneuerbare Energien

Ziele der Energiewende

• Unabhängigkeit von endlichen Ressourcen
• Zentraler Beitrag zur Erreichung der Klimaziele
• Vermeidung der Risiken der Kernenergie
• Vermeidung der Abhängigkeit von politisch instablen Regionen
• Neue Arbeitsplätze, Innovationen und Exportchancen
• Erhöhung der nationalen Wertschöpfung
• Bürgerbeteiligung und Demokratisierung der Energieversorgung

▶ Ziele der Energiewende sind unverändert richtig
Kernelemente einer revitalisierten Energiewende

1. Weiterer Ausbau EE, insbesondere Wind und PV, ist zentral für die Umsetzung der Energiewende.

2. Hoher Anteil volatiler Erzeugung benötigt flankierende Flexibilisierung (Lastmanagement, Speicher, intelligente Netze, flexible Kraftwerke etc.)

3. Flexibilisierung muss durch geeignete Rahmenbedingungen gesteuert werden (Level Playing Field für alle Optionen)

4. Ausbau intelligenter Netze und Vorrang für dezentralen Ausgleich aber auch überregionaler Austausch erforderlich
Paradoxe Intervention bei der PV

> PV wird als eine der beiden tragenden Säulen für den weiteren Ausbau der Erneuerbaren Energien anerkannt (Erforderliche Leistung der PV in 2050 ca. 150 - 200 GW, Stand 2015 ca. 38 GW)

> Preise der PV-Erzeugung wurden drastisch reduziert (8-11 Euro-Cent / KWh), Zubau ist kein wesentlicher Kostentreiber mehr

> Rahmenbedingungen wurden so verändert, dass Zubau fast zum Stillstand gekommen ist (Zubau 2015 voraussichtlich 1 - 1,5 GW), Regelungschaos verunsichert Investoren zusätzlich
PV-Weltmarkt wächst weiter (> + 10% in 2014)

* 2014 vorläufig, Schätzung 2015: von IHS
Quelle: EPIA, IHS
SEIT 2012 SINKT PV-VERGÜTUNG
DOPPELT SO SCHNELL WIE PV-PREISE

Ursachen für Markteinbruch:

- Abbau weltweiter Überkapazitäten, Handelsvereinbarungen mit China und aktuelle Wechselkurse führen zur Stabilisierung der PV-Systemkosten.
- Fehler im „atmenden“ EEG-Degressionsmechanismus lassen EEG-Förderung trotzdem weiter sinken.
- EEG-Umlage auf Eigenverbrauch erschwert neue förderunabhängige PV-Geschäftsmodelle vor allem in GHD.

Stand: 01/2015
Quelle: BSW-Solar, Bundesnetzagentur www.solarwirtschaft.de

*Politisch angestrebter PV-Zubau-Korridor/Jahr

Daten-Quelle: 2013 und 2014: BNetzA, 01/2015 2015: Trendprognose BSW e.V.
ALLE MARKTSEGMENTE VOM PV-MARKTRÜCKGANG BETROFFEN:
BESONDERS STARKER RÜCKGANG DER NACHFRAGE BEI GEWERBLICHEN KUNDEN > 10 KWP

Auswirkung der EEG-Novelle auf den PV-Zubau

Veränderung in Prozent jeweils zum durchschn. monatl. Zubau im ersten Halbjahr 2014

- durchschn. monatl. Zubau im ersten HJ 2014
- Zubau Jul 2014
Zahl der Solarbürger wächst
Jeder Neunte nutzt bereits aktiv Sonnenenergie

2008
4,5 Millionen Solarbürger

2015
9 Millionen Solarbürger

Solarbürger: Bewohner eines Hauses mit Solarwärme- und/oder Solarstromanlage; Quelle: Bundesverband Solarwirtschaft
Ergebnisse Branchenbefragung BSW - 2015

- Rege Beteiligung von Vertretern aller Wertschöpfungsstufen (Großteil der Teilnehmer im Bereich „Installation“ tätig)
- Befragte Unternehmen führen PV-Investitionszurückhaltung vor allen Dingen zurück auf:
 - Informationsdefizite über die Rentabilität und techn. Potentiale
 - EEG-Umlage auf solaren Eigenverbrauch
 - oft wechselnde politische Rahmenbedingungen
- Zu hohe Preise oder Finanzierungsschwierigkeiten werden dagegen eher nicht für aktuellen Marktrückgang verantwortlich gemacht
- Speichertechnologie wird als wichtigster positiver Markttreiber gesehen
- Vor allem Installateure sehen in Kundenbesuchen, Veranstaltungen sowie Internetangebote wichtige Akquise-Instrumente
Kommunen haben es in der Hand

Die Energiewende passiert nicht irgendwo, sondern bei den Menschen vor Ort. Kommunen sind dabei wesentliche Akteure in vielfältiger Funktion:

- Als **Eigentümer** nutzen Kommunen EE
- Als **Planer** garantieren Kommunen die Umsetzung
- Als **Einkäufer** beziehen Kommunen EE
- Als **Aufklärer** informieren Kommunen
- Als **Energieversorger** betreiben Kommunen EE-Anlagen.
- Als **Vorbild** schaffen Kommunen Bewusstsein.
- Als **Moderator** Menschen und Unternehmen zusammenbringen

www.kommunal-erneuerbar.de

SMA Solar Technology AG
Das Projekt „Kommunal-Erneuerbar“

- Das Engagement von Vorreitern wird auf unterschiedliche Weise, transparent und nachvollziehbar aufbereitet: monatliche Auszeichnung einer erfolgreichen „Energie-Kommune“

- KOMM:MAG - Das Jahresmagazin zu Erneuerbaren Energien in Kommunen

- Informationsportal mit Praxisbeispielen, Leitfäden und Ansprechpartner, Vorträge, Hintergrundpapiere, Veranstaltungen und animierte Kurzfilme

www.kommunal-erneuerbar.de
SMA Solar Technology AG
Photovoltaik erfordert keinen umfangreichen Stromnetzausbau

Erzeugung, Verbrauch und Eigenverbrauch eines Vier-Personen-Haushalts an einem wolkenlosen Sommertag

> Der Zeitpunkt der maximalen Stromerzeugung aus Photovoltaik fällt zusammen mit dem Zeitpunkt des höchsten Stromverbrauchs.

> Solarstromanlagen speisen vorrangig ins Mittel- und Niederspannungsnetz ein. Die Netzinfrastruktur ist gerade in Gewerbegebieten gut ausgebaut.

> Durch den Einsatz von intelligenten Speicherlösungen lässt sich der Eigenverbrauch weiter erhöhen.

Solarstromanlagen erzeugen Strom dezentral dort, wo er verbraucht wird.
Der Schlüssel für eine erfolgreiche Energiewende

1. **Sunny Boy Smart Energy** wandelt Gleichstrom in Wechselstrom und kann rund zwei Kilowattstunden Solarenergie zwischen speichern.

2. **Sunny Home Manager** sorgt für die zeitlich optimale Abstimmung von Erzeugung und Verbrauch.

3. **Sunny Portal** für Energievorhersagen, Fernüberwachung und Energiemanagement im Haushalt.

4. **Steuerbare Stromverbraucher**, die nicht auf eine bestimmte Einschaltzeit angewiesen sind, lassen sich vom Sunny Home Manager ferngesteuert aktivieren und in das intelligente Lastmanagement einbinden.

5. **Elektrofahrzeug** lässt sich in Kombination mit einem entsprechenden Wechselrichter als zusätzlicher Stromspeicher nutzen.

Das SMA Smart Home ist exakt auf die Anforderungen der zukünftigen Energieversorgung zugeschnitten.
Batteriekosten-Potenzial für Lithium-Ionen-Technologie

- Große "Economy of scale"-Potenziale in Zellherstellungsprozessen und Batteriefertigung
- Parallele Steigerung der spezifischen Energie durch verbesserte und neue Materialien

COST REDUCTION LEVERS FOR BATTERY PRODUCTION [USD/kWh]

<table>
<thead>
<tr>
<th>Category</th>
<th>Costs 2010</th>
<th>Cost of raw materials</th>
<th>Improved materials processing</th>
<th>Cell manufacturing efficiency</th>
<th>Cost reductions in other components</th>
<th>Battery assembly efficiency</th>
<th>Mid-term cost projection</th>
<th>Increase in specific energy (50%)</th>
<th>Long-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery assembly</td>
<td>750</td>
<td>-1% p.a.</td>
<td>-1.5% p.a. (net)</td>
<td>-50% (net, doubled)</td>
<td>-75% (total)</td>
<td>-70% (net)</td>
<td>~390</td>
<td>0</td>
<td>~265</td>
</tr>
<tr>
<td>Other components</td>
<td>140</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cell manufacturing</td>
<td>306</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>Material processing</td>
<td>111</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Raw materials</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>-40</td>
<td>27</td>
</tr>
</tbody>
</table>

Kosten für Batterien werden wahrscheinlich deutlich sinken

Quelle: Roland Berger "LIB value chain cost model", Aug 2011
Deutlicher Preisrückgang bei Batteriespeicher-Systemen im zweiten Halbjahr 2014

Speichersysteme werden erstmals seit Beginn der Messung spürbar günstiger

Preisrückgang verläuft bei beiden Technologien nahezu parallel

Hinweis: Der Preisindex der jeweiligen Speicher-Technologie wird auf Basis des durchschnittlichen Speicherpreises (über alle Größenklassen) ermittelt.
Vier-Personen-Haushalt mit einem jährlichen Stromverbrauch von 5.000 kWh, Strompreis 0,28 €/kWh, Strompreissteigerung 4 % p. a., Einspeisevergütung 0,1234 €/kWh, 5 kWp Anlage, Anlagenpreis 1.700 €/kWp, Spez. Jahresertrag 950 kWh/kWp, Eigenverbrauch 30 %
Vier-Personen-Haushalt mit einem Stromverbrauch von 5.000 kWh, Anlagenleistung 5 kWp, Strompreis 0,28 €/kWh, Strompreissteigerung 4 % p. a., Einspeisevergütung 0,1234 €/kWh, spezifischer Ertrag 950 kWh/kWp, Eigenverbrauchsquote 55 %, Autarkiequote 52 %
HTW-Unabhängigkeitssrechner

> http://pvspeicher.htw-berlin.de/unabhaengigkeitsrechner/

Unabhängigkeitssrechner

- **Jahresstromverbrauch**: 6000 kWh
- **Photovoltaikleistung**: 5 kWp
- **Nutzbare Speicherkapazität**: 5 kWh

Eigenverbrauchsanteil: 63%

Autarkiegrad: 50%
So funktioniert AVU meinsolar (unverbindliche Beispielrechnung)

32 m²

Ihre Anlage produziert rund 4.500 kWh Solarstrom im Jahr über mindestens 20 Jahre hinweg

1.350 kWh selbst verbrauchter Eigenstrom reduzieren direkt Ihre Stromkosten, 3.150 kWh speisen Sie ein

3.150 kWh beziehen Sie aus der Steckdose

Unterm Strich:

bisherige Stromrechnung: 1.215 €
- Eigenstromverbrauch: −365 €
- Eigenstromeinspeisung: −406 €

verbleibende Stromkosten: 444 €

Vermiedene Stromkosten¹ pro Jahr mit Solaranlage und Eigenstrom:
aktuell: rund 770 € / Jahr
in 10 Jahren: rund 895 € / Jahr
in 20 Jahren: rund 1.064 € / Jahr

¹Jährliche Preissteigerung von 3% angenommen

+ 405 € Einspeisevergütung: Etwa 1.350 kWh Ihres Solarstrooms nutzen Sie für Ihren eigenen Stromverbrauch. Den Rest speisen Sie ins Netz ein und erhalten dafür zusätzlich pro Jahr rund 405 € staatlich garantierte Einspeisevergütung für die nächsten 20 Jahre (bei Inbetriebnahme im Juli 2014 beispielsweise 0,1288 € pro kWh). Der Eigenstromanteil lässt sich durch die Nutzung von energieintelligenten Geräten oder der Kombination mit einer Wärmepumpe auf 50 % und mehr steigern. Jede selbst verbrauchte Kilowattstunde Strom spart bares Geld.

Die Berechnung der jährlichen Stromkosten basiert auf einem Durchschnittspreis von 27 Ct./kWh im Jahr 2014.
EVU als Anbieter für PV-Anlagen für Haushaltskunden II
MVV Energie AG

<table>
<thead>
<tr>
<th></th>
<th>Kauf Möglichkeit 1</th>
<th>Pacht Möglichkeit 2</th>
<th>Kredit Möglichkeit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wann die Möglichkeit besonders in Betracht kommt</td>
<td>Die Bergers haben Geld gespart, möchten Strom selbst erzeugen und ihr Ersparnes sicher anlegen.</td>
<td>Die Bergers möchten das Rund-um-sorglos-Paket: Feste monatliche Beträge und 18 Jahre Wartung inklusive.</td>
<td>Die Bergers suchen nach einem Weg zur eigenen Solaranlage, auch ohne eigenes Startkapital!</td>
</tr>
<tr>
<td></td>
<td>Sofortkauf</td>
<td>Pachtlaufzeit 18 Jahre</td>
<td>14 Jahre Laufzeit 4% effektiver Jahreszins</td>
</tr>
<tr>
<td></td>
<td>Sie sind Besitzer und Eigentümer der Anlage.</td>
<td>Anzahlung EUR 704,04Sie sind die Besitzer der Anlage.</td>
<td>Sie sind Besitzer und Eigentümer der Anlage.</td>
</tr>
<tr>
<td>Die Garantien</td>
<td>Sie haben die volle Herstellergarantie für Anlage, Komponenten und Montage.</td>
<td>Sie haben die volle Herstellergarantie und die greenergetic GmbH übernimmt die Wartung und Reparaturen.</td>
<td>Sie haben die volle Herstellergarantie für Anlage, Komponenten und Montage</td>
</tr>
</tbody>
</table>

* Beispielrechnung einer 5 kWp Solarstromanlage
Anwendungbeispiel: Vollversorgung von Mietern einer ganzen Siedlung

Neue Heimat Strom

Solarstrom direkt Neue Heimat Nußloch – der Ökostrom für die Neue Heimat der HEG Heidelberger Energiegenossenschaft eG

Der Wechsel ist einfach: Füllen Sie den Stromliefervertrag aus und senden Sie ihn an uns – wir erledigen den Rest für Sie.

Bei Rückfragen können Sie uns einfach per E-Mail unter info@heidelberger-energiegenossenschaft.de oder telefonisch unter 06221-477-360 erreichen.

Quelle: www.heidelbergerenergiegenossenschaft.de/contact/8/projekte/4/projekt-neue-heimat-nussloch
Eigenverbrauch kann bis zu 100 % sein und ist mit Planungstools individuell bestimmbar.

<table>
<thead>
<tr>
<th>Charakteristisches Lastprofil</th>
<th>Gewerbe werktags (8 - 18 Uhr)</th>
<th>Gewerbe überwiegend Abendstunden</th>
<th>Gewerbe durchlaufend</th>
<th>Gewerbe Ladenöffnungszeiten</th>
<th>Landwirtschaftsbetriebe mit Milchwirtschaft</th>
<th>Sonstige Landwirtschaftsbetriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
<td>L1</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Graph</td>
<td>Graph</td>
<td>Graph</td>
<td>Graph</td>
<td>Graph</td>
<td>Graph</td>
<td>Graph</td>
</tr>
</tbody>
</table>

Typischer Eigenverbrauchsanteil*:

- **10 - 90 %**
- **10 - 100 %**
- **10 - 100 %**
- **10 - 90 %**
- **20 - 70 %**
- **10 - 100 %**

Anwendungen:

- **Bürogäbude:**
 - Bildung
 - Kantinen
 - Krankenhäuser
 - Verwaltungen
- **Produz./verarb. Gewerbe:**
 - Bau
 - Werkstätten und Autohäuser
 - Hotels
 - Restaurants
 - Cafés
 - Tankstellen
 - Kultur-, Sport-, Freizeitbetriebe
 - beleuchtungsorientierter Stromverbrauch
 - Läden mit starker Kühlung
 - Kältelanlagen
 - Zwangsbelüftung
 - Parkhäuser
 - IT-Infrastruktur
 - Kläranlagen etc.
 - Ladengeschäfte
 - Kaufhäuser
 - Möbelhäuser
 - Annahmestellen
 - Reinigung etc.
 - Milchviehbetriebe (Stromverbrauch durch zweimaliges Melken und anschließendes Herunterkühlen)
 - Landwirtschaftliche Betriebe mit Produktion und Haushalt
 - Schweinemast etc.
Fazit

> Kommunen können einiges dafür tun, dass die heute vorhandenen Potentiale der PV besser ausgeschöpft werden
 > Informationen über die Wirtschaftlichkeit der PV unter Einbeziehung von Eigenverbrauch und Speicherung
 > Verfügbarmachung geeigneter Freiflächen für große PV-Anlagen
 > PV-Angebote über eigene Stadtwerke oder kommunal dominierte Regionalversorger
 > Vorbildfunktion im eigenen Gebäudebestand
 > Teilnahmen am Austausch mit anderen Kommunen - Lernen von Best-Practice
 > Kommunale Wohnungsbaugesellschaften als Betreiber von PV-Anlagen

> Wenn wir den notwendigen Ausbau der PV in Deutschland voranbringen wollen, müssen wir aber auch die Rahmenbedingungen verändern. Kommunen können auch hier Einfluss nehmen
 > Innerparteiliche Gremien
 > Mitgestaltung Landes- und Bundespolitik
Danke für Ihre Aufmerksamkeit